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The problem of the periodic motions of a system containing a small parameter p and which, in the case of zero value of this
parameter, is identical to an autonomous reversible system, is investigated. The periodic motions of an autonomous reversible
system form a family. The problem of which of the motions of this family are generating, that is, belong to the family of u periodic
motions and correspond to the value p = 0, is solved. Both “reversible” perturbations, which preserve the property of reversibility
in a perturbed system, as well as perturbations of general form are considered. Both resonance and non-resonance cases and
cases where there is an additional “internal” resonance (of the third or fourth order) are studied. The generating solutions, which
belong to a Lyapunov family of generating reversible systems as well as a system which is close to a conservative system with one
degree of freedom, are investigated in detail. In each of the problems investigated, constructive conditions are obtained for the
existence of a periodic motion in the perturbed system. In an application, the dynamics of a Lagrangian gyroscope with a vibrating
suspension point is studied. Periodic motions are found in the case of small oscillations of the suspension point and, in particular,
the existence of pseudoregular precessions of a gyroscope is established. The cases investigated were omitted from the treatment
in earlier papers. © 2001 Elsevier Science Ltd. All rights reserved.

1. FORMULATION OF THE PROBLEM

We will consider the problem of periodic motions in the system
u =U(u, v)+pU,(u, v, v, 1) (1.1)

=V, v)+uV,(Lu, v, 1); ueR', veR" (=n)
U, -v)=-U(u,v), V(u,-v)=V(u,v)

with a small parameter u. When p = 0, we have a generating or unperturbed system, which is assumed
to be reversible and invariant under the replacement of (¢, u, v) by (¢, u, —v). For small |u| # 0, we
obtain a perturbed system which is close to an autonomous reversible system. The perturbations
uU;, uV; are assumed to be 2n-periodic with respect to the time ¢.

Periodic motions of an autonomous reversible system always belong to the family in [1]. The question
arises as to which of the motions of this family are generating, that is, belong to the family of u periodic
motions and correspond to the value p = 0. The answer to this question obviously depends on the form
of the perturbations which are acting and also on whether there is a resonance or a non-resonance
situation. Here, it is natural to assume that the perturbations belong to the class of reversible
perturbations which preserve the invariance of the perturbed system under the replacement of (¢, u, v)
by (¢, u, —v), or to consider perturbations of a more general form when system (1.1) ceases to be
reversible when u # 0.

This formulation of the problem is natural and arises in numerous applications, in particular, in
mechanics. When the reversible system is a conservative system with one degree of freedom, fairly
complete results were obtained in (2, 3].

A problem for a system which is close to a Lyapunov system was previously solved in a similar
formulation [4]. The results described below in this paper are close in the scheme of ideas to the results
obtained in this problem. Furthermore, an autonomous reversible system, like a Lyapunov system, admits
of [5-7] a Lyapunov family of periodic motions. Below, this family is subjected to a careful analysis with
the aim of picking out the generating periodic motions.

The applicability of the results obtained below is obviously not restricted by the analysis of a Lyapunov
family of reversible systems or conservative systems with one degree of freedom. The basic models which
are used in classical and celestial mechanics (the Hill problem, various modifications of the three-body
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problem, the N-body problem, a heavy rigid body with a fixed point, a heavy rigid body on an absolutely
rough plane, the equations of motion of a mechanical system under the action of positional forces, the
equations of motion in quasicoordinates, etc.) are reversible {8, 9] and are described by autonomous
equations. Examples, which became canonical examples, are also known of non-local families of periodic
motion in these problems, such as elliptic orbits in the two-body problem, a family which contains Grioli
precessions, in the problem of the motion of a heavy dynamically asymmetric rigid body around a fixed
point and so on.

Finally, we mention that results in the theory of the oscillations of reversible mechanical systems which
have been previously obtained [3, 7, 10, 11] are used and developed in this paper. A solution of an
alternate problem is given within the framework of the development of a complete theory.

2. ANALYSIS OF A GENERATING SYSTEM

We will assume that, when p = 0, system (1.1) allows of T = 2rn-periodic motion. The initial value
v’ = u* and the period 7 = 2x then satisfy the system of # functional equations

v (u°,0,T/2)=0, s=1,...,n (2.1)

(u(u®, v°, t), v(u°, v°, t) is the solution of the generating system with the initial point (u°, v°) when
t = 0). This system contains/ + 1 unknowns u9, ..., u}, T. Hence, the system of equations (2.1) together
with the solution w°® = u*, 7 = 27 has a k-family of solutions (k = / — n) which leads to the existence,
together with the 2n-periodic motion, of a k-family of 7T-periodic motions containing this motion

“=‘P(hvt)a V=\b(h, t); ‘P(hv_t)':‘P(h, t)v ‘b(h,—t)=-l’l(h,t)

(hy, ..., hy are the parameters of the family, that is, the components of the vector ). This family consists
of motions which are symmetrical with respect to the fixed set M = {u, v:v = 0} of the generating
system. In the general situation, the period T(h;, ..., k) also depends on the parameters of the family
and T(h3, ..., hy) = 2n.

The variational equations have k£ + 1 solutions of the form

o (hy,. b t) Wy, ... kD) 22)
ot ’ ot

o (hy, ..., 1) ob(h,... k1)
oh; ' oh; ’

J J

=l k 2.3)

and, when ; = hj,j = 1, ..., k, solution (2.2) is 2n-periodic.
The functions

@By B TI2T)E, W(hy, ... b, TI2T)E)

have a period equal to 2n which is independent of 4, ..., h;. Their derivatives with respect to h; will
therefore also be 2n-periodic functions. We calculate these derivatives, marking the substitution of the
values of the parameters i; = 4} (j = 1, ..., k) with a subscript asterisk.

_[2e), 2 [37) (2 (), (o7 (%
"f(')'(ah, )*"L 2n[ahj ]( ot ) qj(t)_[ah, ] * 2n(ahj J( ot )

j=1,...k
From this, we find the quantities
(@ /0h;)., (W /0h;)., j=1,...,k 2.4)
which will be odd and even functions of ¢ respectively.

The functions (2.4) are the solutions of the system of variational equations. Subject to the condition
that dT(hY, ..., hy) # 0, we set up from these functions a system of solutions
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oT oT aT oT .
) o), E) ) s

which are 2n-periodic with respect to ¢.

The solutions (2.5) are symmetrical with respect to the fixed set M, = {du, v : &v = 0} of the system
of variational equations. Together with solution (2.2), which is symmetrical with respect to the set
M, = {3u, dv : du = 0}, the functions (2.5) form a system of k 2n-periodic solutions. Furthermore, the
variational equations have a single increasing solution of the form (2.4) which is symmetrical with respect
to the set M;. All this means that the variational system has & + 1 zero characteristic exponents with
k groups of solutions such that, after this system has been reduced to a system with constant coefficients,
the equations corresponding to the zero exponents take the form

£,=0(=1.,k=-1), m=0 g=m (2.6)

In this case, we have {; = 0 in the set M;. Furthermore, k = [ —n + 1 or the variational equations have
at least / — n simple zero characteristic exponents [12].

It follows from the form of the Eqs (2.6) that, according to the zero characteristic exponents, we have
a crude case [3, 10, 11] in a problem concerning the continuation of symmetrical periodic motion with
respect to a parameter in a class of “reversible” perturbations.

The following theorem therefore holds.

Theorem 1. Suppose a generating, autonomous, reversible system obtained from (1.1), when p = 0
allows of a 2m-periodic motion. This motion then belongs to the k-family of the parameters ky, ..., i
of the T-periodic motions. If the period T(hy, ..., hy) depends on hy, ..., Ay, T(hY, ..., hy) = 2,
dT(h}, ..., h;) = 0, then the variational equations have at least k + 1 zero characteristic exponents with
k groups of solutions (k = [ — n + 1) and these exponents do not prevent the extension of the
2n-periodic motion with respect to the parameter p, if the perturbations belong to the class of “reversible”
perturbations.

Corollary 1. If the variational equations have k 2n-periodic solutions, then, for sufficiently small
[u| # 0, the reversible system (1.1) has a 2n-periodic motion which changes into the 2n-periodic motion
of the generating system when n = 0.

Proof. When the above-mentioned conditions are satisfied, we necessarily arrive at a subsystem of the form of
(2.6). The remaining equations do not contain zero characteristic exponents.

We have the crude case [3, 10, 11] in the sense of the continuation of the periodic motion with respect to a
parameter in the class of “reversible” perturbations.

2. If n = 1 in system (1.1), the condition dT(h*) # 0 guarantees the continuation of the 2n-periodic
motion of the generating system with respect to the parameter i in the class of “reversible” perturbations.

Proof. In this case, the variational equations only have zero characteristic exponents. They reduce to the form
(2.6) and guarantee the continuation of the symmetric periodic motion with respect to the parameter.

Remark 1. The conditicn dT # 0 is a natural condition in the case of non-linear vibrations. The vibrations of a
linear system do not possess this property.

2. Note that the system of variational equations can also have other zero characteristic exponents in addition
to those shown in Theorem 2.

Example 1. All the motions in a two-body problem are plane. The motion in a plane is described by a fourth-
order reversible, autonomous system (/ = n = 2). This system admits of a two-parameter family of symmetric,
periodic (elliptic) orbits and dT # 0. Consequently, k = 2, the variational equations are reversible and there are
no less than k + 1 = 3 zero characteristic exponents, the total number of these exponents being 4.

3. In Example 1, we find one of the interesting problems in which there is a non-local family of periodic
motions of a reversible system.
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3. ASYSTEM, CLOSE TO A CONSERVATIVE SYSTEM WITH
ONE DEGREE OF FREEDOM

Consider the equation
T+ f()=uF(W, 2,7, 1) (3.1

where the function F(u, z, z, t) is 2n-periodic in t. The problem of the existence in (3.1) of a vibrational
motion which, when p = 0, converts into one of the vibrations of the generating system has been
investigated in [2, 3] as well as the analogous problem for the case of rotational motions [3]. The case
of reversible equation (3.1) which satisfies the conditions f(—z) = —f(z), F(u, -z, 2", ~t) = = F(u,z,z', t)
was investigated separately in [3].

Below, we consider reversible equation (3.1) in which

Fp, z,~z,-0=F(,z 2.1 3.2)

When p = 0, we have a conservative system with one degree of freedom, an exhaustive analysis of
which is carried out using the phase plane method. We assume that this system admits of a family of
vibrational motions (Fig. 1), which obviously can be parametrized by the constantx of the energy integral

22+ V(2) = x(const), V(z)= 2] f(2)dz

The period of the vibrations is calculated using the formula
Zmax (X) dZ

T(x)=2 =
N zm;{m Vx=V(2)

where z,,in(x), Zmax(¥) are the smaller and the larger root of the equation V(z) = x, respectively.

The vibrations of the generating equation being considered are symmetrical with respect to the abscissa
and system (3.1), (3.2) is reversible with a fixed set {z, z': z = 0}. We therefore derive the following
theorem from Corollary 2 of Theorem 1.

Theorem 2. The symmetrical 2nk-periodic (k e N) vibrational motion of a conservative system with
one degree of freedom, for which

T(x"y=2mk/m, meN, dT(x")z0
is continued with respect to the parameter p in system (3.1), (3.2).

Example 2. The plane vibrations and rotations of a dynamic, symmetrical satellite in an elliptic orbit
under the action of gravitational forces and light pressure are described by the reversible equation [13]

. 2
2esinv c(l+e . .

- = (+e) Fsinz|sinz|
l+ecosv . (I+ecosv)

(z is the angle between the axis of dynamic symmetry and a fixed straight line in the orbital plane, e is

@) z ®) z

Zmin Zmax 4 Zmin Zmax z

Fig. |
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the eccentricity of the orbit, v is the true anomaly and c is a parameter which characterizes the light
pressure). When e = 0 (a circular orbit), we have a smooth conservative system with one degree of
freedom

" =csinz|sinz]|

When ¢ > 0, the equilibrium positions * 7 are stable and are surrounded by periodic motions, and,
when ¢ < 0, the origin of the coordinates is such an equilibrium. The period of the above-mentioned
vibrations depends on the constant x of the energy integral and, for an equilibrium at *+ &, we have
dT # 0[13]. Consequently, (Theorem 2), all the 2nk-periodic vibrations of a satellite are “preserved”
in a weakly elliptic (e < 0) orbit.

Note that this result was formulated earlier in [13]. However, here, a theorem [3] has been used which
yields the conditions for the existence of periodic motions which are symmetrical about the z’-axis. The
motions about a zero equilibrium position (¢ < 0) are of this type. Periodic motions about the equilibria
+ 1 are symmetrical about the z axis and it is necessary to apply Theorem 2 to them.

4. A LYAPUNOV FAMILY OF PERIODIC MOTIONS

As previously, we consider reversible system (1.1) which is now conveniently written in the form

u =Av+Uy(u, v)+uU (Y, u, v, 1)
4.1
v =Bu+Vy(u, v)+uV,(h,u, v, 1), ue R, veR" (=n)

(A and B are constant matrices and Uy, V, are non-linear terms).

Suppose (a) the characteristic equation of the linear part of system (4.1), when p = 0, has a pair *iw
of pure imaginary roots, (b) among the other roots of this equation, there are no roots which are equal
to xikw(k € N) and (c) rank B = n. Then [7], system (4.1), when p = 0, has an (/ - n)-parameter set
of equilibrium positions which belongs to the fixed set M = {m, v : v = 0 and contains the zero
equilibrium, and a one-parameter family of Lyapunov periodic motions adjoins each point of this set.

We will now investigate the question of the existence, in system (4.1), of a 2n-periodic motion when
u # 0. For this purpose, we shall utilize the possibility of reducing system (4.1), when condition ¢ is
satisfied, to the form [7]

E=Py+E & x,y)+1E 1 x5, 1) 4.2)

x =Jy +Xo (& X ¥)+ X (1, £, X, ¥, 1)
y'=X+Y0(§vxyy)+qu(u7§1xvyvt)v geRl_n' XER"’ yER"

(P is a constant matrix and J is a constant Jordan matrix).

The non-resonance case. We will assume that the Jordan matrix J does not contain eigenvalues which
are close to the number —p?, p e N. In this case, we make the substitution: (£, x, y) — (€€, ex, ey),
0 < 6 < 1. As a result, we obtain the following system.

£ =" Py +e7'E,(e%E, ex, ey) + € UE | (1, €%, ex, €Y, 1)
x = Jy+e"Xo(e%, ex, ey) + £ 'uX, (1, €°£, ex, €y, 1) (4.3)
y = x+& Y (%, ex, ey) + £ 'nY, (1, €°¢, ex, ey, 1)

We put € = u'5. Then, when u = 0, we have a linear generating system which does not have roots of
the characteristic equation equal to +ip. Consequently [10, 11], this case is not critical, and, for sufﬁciently
small Iul # 0, system (4.2) has a unique 27-periodic motion. In system (4.3), the “amphtude of these
motions is of the order of £ 1. Hence, in system (4.2), the periodic motion has an “amplitude” of the
order of .

Theorem 3. In the non-resonance case, system (4.1), in the case of a sufficiently small || = 0, admits
of a unique 2n-periodic motion and it has an “amplitude” of the order of p.
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The resonance case. We assume that
w=p+au®, =% (a=const) (4.4)

In this case, we separate the variables xy, y; in system (4.2) which correspond to the pure imaginary
roots. Then, all the variables in the Lyapunov family, apart from &, x,, y;, can be assumed to be equal
to zero with an accuracy which is considered below. Next, we change from the variables xy, y; to the
complex conjugate variables

z=x,+iy;, Z=x -y

and we reduce the system in the variables &, z, Z to normal form up to terms of the third order inclusive.
Then

7 =izlo+ o)+ Azz]+...
(A is a real constant) and the frequency Q of the periodic motion is calculated using the formula

\

I-n I~n
Q=w+0,(E)+A°2°+..., w,(§)=z]C,§,-+'§lC,-k§j§k
Jj= Jik=

(Cj, G are real constants, and z° and 2z° are the initial values of z and 2 respectively). The Lyapunov
family adjoins the equilibrium & = £*, z = z = 0. We assume that Q(&", |z°|) = p € N. Then, in the
case of fixed &*, we have dQ(&”, |z°]) # Oonlyif A4 # 0. The following theorem therefore follows from
Theorem 1.

Theorem 4. If, when p = 0, system (4.1) satisfies requirements a, b and ¢ above and, moreover, the
resonance condition (4.4) is satisfied, then a 2n-periodic motion exists in system (4.1) in the case of
sufficiently small || # 0 and almost always (4 # 0).

5. A SECOND-ORDER SYSTEM. THE RESONANCE CASE

It follows from Theorem 3 that, in the non-resonance case, the “amplitude” of the periodic motion is
of the order of the small parameter p. We will now investigate what is the “amplitude” in the resonance
case. For this purpose, without any loss of generality, we consider the second-order system

X =—wy+ X(x, y)+HX (L, x, y, 1)

G
y =ax+Y(x, y)+ul(u, x, y, 1)
In this case, the zero equilibrium of the generating system will be the centre.
We make the following substitution: (x, y) — (ex, ey). We then obtain
x = -0y +£7 X(ex, ey) + pe ' X, (u, €x, ey, 1)
(5.2)

y =ax+£" Y(ex, ey) +pe” X (1, ex, €y, 1)
and, in the general case, we have
X(ex, ey) =€°Xy(€, x, ), Y(ex,ey) =€’Yy(g, x, y)

We put ¢ = pu'5 and write system (5.2) in polar coordinates r, ® (x = r cos 8,y = r sin ). We obtain the
system

r =g[(Xy + X,)cos8+ (¥, +Y,)sin6]
(5.3)

0 =p+e’r ' [~(Xy + X,)sin@+ (Y, + ¥ )cos 0 + are*® %)

in which, by virtue of the reversibility of the system obtained from (5.1) when u = 0, the conditions
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X, (0, rcos®, rsin 8)cos 0 + Y5(0, rcos®, rsin@)sin@=0
6(r, 0) = —X,(0, rcos®, rsin8)sin0 + ¥5(0, rcos0, rsin@)cos0 = Ar® (A =const)

are satisfied.
System (5.3) depends on the parameter €. When € =0, (5.3) permits of a symmetrical 27/p — periodic
motion of the form

r=r" (const), 0=6,(t); 6,(1)=0,()=pt umm 6,(1)=6,(f)=pr+n
Suppose that

X.()= X,(0,0,0,£)=ag /2 +a, cost+bysint+a,cos2t + by sin 2t +...
(5.4)
Y.(t)= ¥,(0,0,0,1) = ag /2 +aj cost +b; sint +a, cos2t + by sin2t +...

We consider two cases.

1. “Reversible” perturbations. In this case in formula (5.4), the expansion of the function X.(¢) only
contains odd harmonics and the expansion of the function Y,(t) only contains even harmonics.

According to the general results obtained earlier in [3], the question of the existence, in reversible
system (5.3) when € # 0, of a 2n-periodic motion is solved by the amplitude equation

T [0(r*, 8,(1)) + kar™ — X,(£)sin0,(r)+ Y.(t) cos 0,(1)}dr = 0
0

(k = 1 when 6 = % and k = 0 when ¢ > %4). We write this equation in the explicit form
FOYE(ah=b)/2=0, FUr)=Ar" +kar’ (5.5)

(the sign in front of the bracket corresponds to the sign in the notation for the function 03 (¢)).

It can be seen (Fig. 2) that, in the non-degenerate case when A(a;, - b,) # 0, one of the equations
(5.5) always has a single simple positive root. The number of such roots for each of the equations is
equal to one or two and the overall number of roots is equal to one or three. A 2n-periodic solution
of system (5.3) with an “amplitude” of the order of unity corresponds to each root. On taking account
of the scaling which is carried out on passing from system (5.2) to (5.3), we conclude that 2n-periodic
motions exist in (5.1) with an “amplitude” of the order of p'.

Theorem 5. In the resonance case (4.4), the non-degenerate reversible system (5.1), for sufficiently
small |u| # 0, allows of s symmetrical (s = 1 ors = 3), 2n-periodic motions of the form

£ fn
A>0,a<0 , A>0,a20

Fig. 2
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/ * *x .
x=LU 1 cos pt+o(u%), y= uyf’r sin pt+0(p.%)
(s is the number of simple positive roots r* of Egs (5.5)).
Remark. In the case when A = 0, we choose ¢ = ul/S and take account of the fifth-order terms in the functions

X and Y. As a result, we conclude that 2n-periodic motions exist with an “amplitude” of the order of p1/5 and so
on.

2. Perturbations of general form. In this case, we have [10] a system of two amplitude equations

2r

[ [X.()cos0.(r)+ Y.(2)sin0,(n)]dt = 0

0

2r

[ [8(r", 8,(1)+ kar” = X.(1)sin®, () + Y.(£)cos0,(Nldr = 0
0

where
r=r*(const), 6=0,(r)=pt+0° (8°=const) (5.6)

is the 2n/r-periodic solution of the generating system obtained from (5.3) when € = 0.
Substitution of the explicit expressions for X, Y., 6 leads to the system

(a, +b;)c059°+(a; ~b,)sin®° =0

.7
ArS +kart + (a, —b,)cos6°—(a, + b,)sin€°=0
It can be seen that, in the non-degenerate case,
Al(a, +b3)* +(a}, —b,)*]#0 (5.8)

system (5.7) always has at least one simple solution and the 2n-periodic motion of system (5.1)
corresponds to this solution [10]. In particular, when a,, + b, = 0, we have 6° = 0 or 6° = 7, and this
solution will be close to a symmetrical solution.

Theorem 6. For a sufficiently small |u| # 0, the non-degenerate resonance system (4.4), (5.1), (5.8)
admits of s 2n-periodic solutions of the form

x= per* cos(pt+0°)+ o(u%), y= u%r* sin(pt +6°)+ o(uyJ)
(s is the number of simple roots (+*, 6°) of system (5.7) for which r* > 0).

Remark 1. In the analytic case, the generating system in (5.1) is identical to a Lyapunov system and the result
of Theorem 6 is known [2].
2. Example 2 is an interesting continuous problem; the theory for a Lyapunov system is inapplicable here.

6. ASYSTEM OF ARBITRARY ORDER.
PERTURBATIONS OF GENERAL FORM

For simplicity, we will assume that the condition detJ = 0is satisfied in system (4.2). Then, (4.2) reduces
to a form in which P = 0. For this purpose, instead of each of the variables &, it is sufficient to choose
the required linear combination of the variables &;, ... &, x1, ..., X,

When u = 0 in (4.2), we have a reversible generating system which allows of a unique family of
equilibrium positions

£=§E (const), x=y=0

We replace & by £ + £ in system (4.2) and, in the resulting system, we change the scale: (&, x, y) —
(€€, ex, €y). We obtain



Periodic motions of a system close to an autonomous reversible system 655

E=¢'E'(ck &, ey)+ue B, £ +eE ex, ey, 1)
X =[J+AEy+e7'X (€6 ex, ey)+pue X1, £ +eE ex, gy, 1) (6.1)
y =(I+BE)x+e"'Y' (€& ex, ey)+pe ' Y(t, £ +e£ ex, ey, 1)

*, X*, Y" are non-linear functions, E'(¢, 0, 0) = 0 and I is the identity matrix).

We will first consider the non-resonance case when the matrix C(§") = [J + Agé’; I + B(£)] does
not have eigenvalues close to the number —p *(p & N). Then, on putting € = |p| 2, we deduce that in
(6.1) a 27-periodic motion & = const, x =y = 0 exists when p # 0. Therefore, when |u| # 0O, system
(6.1) also has a 2n-periodic motion if the amplitude equation

N

n

g E 0, £,0,0, 1)dt=0 (6.2)

has a simple root &".

Theorem 7. Suppose &" is such a simple root of the amphtude equation (6.2) and the matrix
C(£") dose not have eigenvalues which are close to the number —p*(p e N). Then, a unique 2n-periodic
motion exists in the neighbourhood of the equilibrium position £ = €', x = y = 0 of system (4.2) and
it has an “amplitude” of the order of p.

We will now investigate the resonance case (4.4). For this, assuming as before that det J # 0, we put
u = 0 in system (4.2). In the resulting system, we next separate the pair of variables which corresponds
to the resonance frequency and write out the quadratic terms of interest in explicit form. As a result,
taking into account the property of reversibility of the generating system, we have

x ~—my+x2 aCs+yz bns
=1

y —(nx+x2 a;"C, +yZ b,'n, + (6.3)

s=]
E=axy+.., n=),_ E+by+..., {=1_m+.., neR*! LeR"'
Here, a, b;, ai*, by’ are real constants, a and b are real (/ - n)- and (n - 1)-dimensional

vectors respectively, J, ; is an (n — 1) X (n - 1) Jordan matrix and I, ; is the (n — 1) x (n — 1) identity
matrix.

Lemma. If the number — 40’ is not an eigenvalue of the matrix J, 1, system (6.3) reduces to a form
in which all of the coefficients a;, b, a;”, b} are equal to zero.

The proof is carried out by the direct construction of a polynomial transformation with indefinite constant
coefficients. The condition that the coefficients mentioned in the lemma are equal to zero leads to a system of

linear equatlons for determining the coefficients of the transformation. The system is compatible if its determinant
det(J gt 4(0 In l) # 0.

We will now consider the resonance case (4.4) and write system (4.2) in the form

x =-wy+Xo(x, y, & v O+pXi (W, x, y, § m, & 1)

y=oy+h(x, y, & m, H+uh, x, », £ m § 0 (6.4)
E=Ey(x, », § n O+pEM x, »» E M L D)

M =1, l+Ho(x, y, £ m OD+uH i, x, y, E M, L 1)

=L m+Zo(x, y, & m D+pZi, x, y, & m, L 0

We shall assume that the transformation which guarantees the lemma has already been carried out in
this system. Furthermore, we shall assume that, in system (6.4), the variables x and y are transformed
using formulae which ensure normalization of the following second-order system
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x =-y+ Xqs(x, y, 0, 0, 0)
y=ax+Y(x, y, 0, 0, 0)
up to cubic terms inclusive. We now pass into the neighbourhood of the equilibrium
x=y=0, &=, n={=0
and change the scale by the replacement of (x,y, & 1, {) by (ex, ey, & + €€, €¥/m, £%5¢), €’ = w. Finally,
instead of x and y, we use the polar coordinates r and 0.
As a result of all these transformations, we obtain the following system
r=e’[(X; + X, )cos®+(¥y +Y,")sin0]
0 =p+e?r ' [~(Xg + X )sin@+ (¥ + X )cosO+are®?)
£ =BT, +e,(e%, ercosh, ersin®, £ +e2£ e, e5L 1) (6.5)
n =J, L+eH; + £, (€%, ercos®, ersin®, £ +€2& €n, €5 1)
C=1,_0+eZy+ e%Zl (€3, ercos®, ersin®, £ +¢%¢ e%n, e%g, )

Here,

Xo(ex, €y, £ +€%& e%m, M) =e2X(e, £, x, y. £ W, O

Yo(ex, &y, € +€%€ &n, PD =€ (e, £, %, y, £ M D

X =X, ex, ey, £ +e% e, 7L 1)

K=K, e ey, £ +eE e, e 1)
The functions Zj, Hj, Zj vanish when € = 0 and the expansions of the functions X7, Y] when € = 0 are
given by formulae (5.4) with the sole difference that the coefficients of the expansions now depend on
£*. Moreover, when € = 0, we have

X; cos@+ Y, sin@=0, — X;sin®+ Yy cos® = Ar® (A =const)
When € = 0, system (6.5) allows of a 2n/p-periodic motion

r=r"(const), 6=0,(t)=pt+ (90(90 =const), &= const

In order to solve the problem of the existence of a 2n-periodic motion when € # 0, it is necessary to
set up a system of amplitude equations [10]. These equations in the variables r and 6 are the same as
in system (5.7), and for the variable £ we obtain

2n
| £, 0,0 £,0 0 nNdt=0 (6.6)
0

Theorem 8. For sufficiently small |u| # 0, the non-degenerate resonance system (4.4), (5.8), (6.4)
allows of s 2n-periodic motions of the form

x=phrt cosB, (1) +o”), y=prsing,(1)+ou’)
1

E=E +u[ BENE, ndt+op), m=0W), {=01)
4

(s is the number of simple roots (r*, 8°, £*) of system (5.7), (6.6) for which »* > 0).
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7. “INTERNAL” THIRD-ORDER RESONANCE

In the study of the periodic motions of system (4.1) described above, cases of the existence of an
“Internal” two-frequency resonance, when the characteristic equation, together with a pair of pure
imaginary roots i, also has the roots ikw(k € N), were excluded from the treatment. We will now
return to these cases, taking account of the fact that, in the non-resonance case, the problem is solved
by Theorem 3. Here, we will confine ourselves solely to the fourth-order system corresponding to the
above-mentioned pure imaginary roots.

In the case of a third-order “internal” resonance, the system in the complex conjugate z, z acquires
the form

g =iz +iBZ; + Zo(z, D+RZ (L 2, T, 1)
(7.1)

Zé = —iWyz, + iBZZIZZ + Zgo(Z, )+ 'J-ZZI('»L L 7,

Here, the generating system has already been reduced to normal form up to the second order inclusive:
in system (7.1), By and B; are real constant coefficients and the functions Zy, Z,g are of no less than
the third order with respect to z, z . Moreover, the complex conjugate group of equations is omitted
and the frequency o, is identical to 2m,, apart from a small parameter.

We change the scale in system (7.1): (z,2) — (g2, £2), €% = || and henceforth use the polar coordinates
re, 6,

= Jr, exp(i8,), Z, =[r, exp(~i0,), s=1, 2
As a result, we obtain
ro = 26Bor’ry sin @+ £r2 (Zo 7% 4 Z40 )

6 =0+ eBlrl_%’-r2 cosQ+ ——E,—(Zfe"'el ~-Z'e®) (7.2)
2ir|/2

8, =-0, + Fﬁzﬁyz (Zye ™ - Z;¢®)

/
Zy =€Zog+ Zhy, Zop =€ zao(e«/? exp(iB), er exp(—iB))
Zyy = Zy (1, erexp(iB), evrexp(-iB), 1), a=1, 2, 6=0, +20,
Furthermore, if, in system (7.1), we have
Zy4(0, 0, 0, )= X (D) +iY;(r)
X5(t)=ag, 12+ ay, cost + by sint + ay; cOs21 + by, sin21 + ... (7.3)
Ya(t) = ag, / 2+ aj; cost + by, sint +ay, cos2t + by, sin2t + ..
then, in system (7.2), we obtain
Z (e + Z e = 2(X} (1)cos B, + Y} (1)sin 6]
Z (e —Z3e™s = 2i[~ X, (1)sin 6, + ¥, (t)cosB,), s=1, 2
Z3 (=240, 0, 0, n=2,(0, 0, 0, 1)
We consider the resonance case when
O, =p+oyp®, ®,=p/2+a,n’, peN, a,,=const, 6= (7.4)
Here, when € = 0, system (7.2) has a 4n/p-periodic solution

r

a =T

oy =12, 0, =pt+6], 8,=—pt/2+6; (7.5)
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which depends on four arbitrary constants g, 8g. Whenp = 2¢, g e N, the solution will be 2n/g-periodic.
When 6; = 0 or 6; = m, the above-mentioned solution is symmetrical with respect to the fixed set of
the reversible generating system.

According to the previous results [10], simple roots of the system of amplitude equations guarantees
the existence of a periodic motion in system (7.1) for sufficiently small [u| = 0. We will now set up
these equations in each of the cases being considered.

1. “Reversible” perturbations,p = 2q,q € N

F =2Br; cos®° +(ay, — b, )cos 6] +2kal\/'rlT =0
232m0089° +(ag + by)cos 8y +2kayr; =0 (7.6)
2. “Reversible” perturbations,p =2q-1,q € N
F=0, BZJ:l:cos 0° +ka, =0 7.7
3. Perturbations of general form,p = 2q,q € N
F, =2Brysin®° +(a, +b,)cos 6] +(a, — b, )sin6 =0
Fy = 2B,15 cos6° +(a}y — b, )cos 6; —(ay +by)sin6; +2kay i =0 (7.8)
2B,\r’ry sin€° +(a,, — byy)cos B +(ag, +byy)sin0; =0
2By\[i’ry COS6° +(agy + byy)cos ) —(ayy — byy)sin 03 +2kayr; =0
4. Perturbations of general form,p = 2q-1,q e N
F =0, F=0, By\r'rssin®° =0, Bylr’ cos® +kay =0 (1.9)

In formulae (7.6)—(7.9) above, it is necessary to put k = 1 when 6 = 1/2 and k = 0 when ¢ > 1/2.
Moreover, 68° = 63 + 205, and, in systems (7.6) and (7.7), we have 67 = 0 or 8; = .
The following theorem holds.

Theorem 9. A periodic solution

4 = W5 expli(pt +00)) +0’D), 2, = 215 expli(=pt/2+63)} +o(n%) (7.10)

of system (7.1) corresponds to each simple root of any of the systems of amplitude equations
(7.6)-(7.9). Here, in the cases of (7.6) and (7.7), we have symmetrical periodic motion of the reversible
system, in cases (7.6) and (7.8), the solution has a period equal to 2r and, in cases (7.7) and (7.9), the
period is equal to 4m.

This assertion follows from the more general results in [10] applied to system (7.1).

Remark. 1t follows from Theorem 9 that, when p = 2g — 1, g € N the effect of a doubling of the period in the
problem is observed.

We will now analyse systems (7.6)—(7.9) in the case when k = 0.
Suppose the notation

Al = B,(a;l - bp] ), Az = Bz(a;z + qu)

is introduced in system (7.6). In the case when 4; > 0, A; < 0, we choose 6] = 7, 65 = 0 and in the
case when 4, < 0, 4, < 0, we take 6] = 0, 85 = n. Finally, when 4; < 0, 4, < 0, we put 8] = 05 = 0.
It is obvious that such a choice of initial angles guarantees the compatibility of system (7.6). It is only
in the case when 4; > 0, 4; < 0 that system (7.6) does not have roots when k = 0.

When k£ = 0, system (7.7) always has a simple root (r{, r3) with r{ = 0, and r3 are determined
from the first equation in (7.7). In this case, the angles 6] and 6 are chosen such that the quantity
cos 6° cos 0] has a sign which is opposite to that of the number A;.
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We now turn to system (7.8). We multiply the first equation by sin 8° and add it to the second equation,
which has been multiplied by cos 6°. We obtain the next equation by subtracting the third equation after
if has been multiplied by sin 6° from the first equation multiplied by cos 6°. Similar operations are carried
out with the second and fourth equations. As result, we obtain the system

2Br; +(ay, +b,;)sin26; +(a, — b, )cos20; =0
(ay +b3))cos 205 —(a), —b,,)sin205 =0 (7.11)
2B)\[1r; +(a,y ~byy)sin(®) +63)+ (ag, + byy)cos(6] +63) =0
(ag = byp)cos(8] +83) ~(ag, + byy)sin(6) +65) =0
It can be seen that, in the non-degenerate case
B, #0(ay, +b,)(a, —b,)#0, (a,~bgy)(ag +by,)#0

system (7.11) always has a simple root (79, r5, 6, 63).

When & = 0, we replace the first and third equations in (7.9) by the first two equations of system
(7.11). The existence, when k = 0, of a family of 67 solutions in system (7.9) then becomes
understandable. In this solution r$ = 0.

Note that, when k # 0, system (7.9) has a simple solution in which ] # 0, sin 6° = 0.

8. “INTERNAL” FOURTH-ORDER RESONANCE

We will assume that the generating system has been reduced to the normal form up to the third order
inclusive. Then, in the complex conjugate variables z, Z, we have the system

4 =iz +ig(Ay g P +Ap 12, P)+iBZ + Zo(z D+UZM, 2 Z, 1) -~
1

2y = —i0y2y +izy(Agy | 71 I +Ap 1 2o )+ iBZZE + Zog(z, D) +UZy(, 2, Z, 1)
(A, B, are real constants and the functions Z, are of an order which is no less than the third order in

z, ZS. As in the treatment of third-order resonance, we change the scale in system (8.1) and now choose
€ = u's. We next write the system in polar coordinates

ro = 262B r/*ri? sin@ + €212 (Zhe 0 + Z2e®e), a=1,2

6; =, +&2(Ay 5 + Apr, + B 722 cos8) + ey (Zre™ ~Ze™) (8.2)
in?

0, = ~w, + €2 (Ayfj + Agpphy + Bzri}ér2 2c0s0)+ ey (Ze ™2 - Z;eiez)
2["2 2

9=91+392

(the functions Z, have the same meaning as in system (7.2)).
We now consider the resonance case when

o, =p+ap’®, @,=p/3+apn’, peN (g ,=const, 6=2/3)
Here, when £ = (), system (8.2) has a 6n/p-periodic solution
Ty =y, O0=1,2; 8, =pt+6), 6,=—pr/3+86;
(re, 0% are constants) and, when p = 3q, ¢ € N, the solution will be 2n/g-periodic. Moreover, in the

symmetric solution, we have 03 = 0 or 63, = 7.
We now set up the systems of amplitude equations in each of the possible cases
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1. “Reversible” perturbations,p = 3q,q € N

. oy, o2 S e .
F=2(A 8 + Agn)n ? +2Br, ? cos® +(a, — b, )cos8 +2ka1rl°y2 (8.3)

o oy /2 oy o ° * ° al/
2(Ay K + Apry)r,  +2Byk 2r2 cos0 +(ag; +b‘72)c0562 +2ka,r, 2 =0

2. “Reversible” perturbations,p # 3q,q € N
F=0, Ay +Apr +By\r'r, cosO° +ka, =0 (8.4)

3. Perturbations of general form,p = 3q,q € N

ay - o * o *
K =2Br, *sin0 +(ay +b,)cos6) +(a, — b, )sin6 =0

Y

o L o Q}/ o * -] *
F, =2(A05 + Axn)n +2Brn ? cos +(ap —by)cos® —(a, +b,)sin) +2ka;" " =0

2B,n 2r2 sin®” +(agy — b,p)c0s8; +(agy +byy)sin®; =0 (8.5)

o © 0} oy o o * o * -
2(Ay 1 + Aoy )1y ? +2Byr 2r2 cos0” +(azy +b,5)c0s 0] —(a,, — by, )sinB; +2ka2r2% =0

4. Perturbations of general form,p # 3q,q € N

b
F =0, By r;sin®° =0 (8.6)
Fy =0, Ay’ +Ayprs + By\[K'r; cos8° +kay =0
Theorem 10. A periodic solution

4 =uy3\/;,:exp{i(pt+0f)}+o(u%), z =u;/k/gexp{i(—pt/3+9§))+o(pyl)

of system (8.1) corresponds to each simple root of any of the systems of amplitude equations
(8.3)-(8.6). Here, in the cases of (8.3) and (8.4), we have a symmetric solution of a reversible system.
In cases (8.3) and (8.5), the solution has a period equal to 2n while, in cases (8.4) and (8.6), the period
is equal to 6m.

9. THE DYNAMICS OF A LAGRANGIAN GYROSCOPE WITH
A VIBRATING SUSPENSION POINT

Consider the motion of a Lagrangian gyroscope (of a dynamically symmetrical rigid body with a centre
of mass on the axis of symmetry) about its suspension point O. It is assumed that the point O executes
vertical harmonic oscillations {(¢) = a., cosQ¢ about a certain fixed point.

The equations of motion of the problem are known [14, 15]. If the orientation of the connected system
of coordinates is specified by the Euler angles, the coordinates y and ¢ will be cyclic. We put the constant
values of the moments p,, and p, equal to 4Qa, AQb respectively (4 is the equatorial moment of inertia,
and a and b are dimensionless constants). We then obtain [14, 15] the following expressions for the
angular velocities of the precession and characteristic rotation of the gyroscope.

,_a—bcosO ,__Ab (a—bcosB)cosO
sin?@ C sin® @
(C is the axial moment of inertia and a prime denotes differentiation with respect to the dimensionless
variable T = Q).

Hence, the investigation of the motion of the gyroscope reduces to an analysis of a system with one
degree of freedom and a generalized coordinate ©
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d_ (a-bcos6)?

0"+
d8  2sin’0

+ (-0 +PcosT)sin®=0 (9.1)

The dimensionless parameters o and B and defined by the formulae [14, 15]

= ———ngG B = &‘
AQ?’ Iy

(ly = A/(mzg) is the reduced length of the body as a physical pendulum, m is the mass of the gyroscope
and Z; is the distance from the centre of mass G to the point 0). The parameter o (o > 0) characterizes
the position of the centre of mass on the axis of symmetry and the parameter §§ (f = 0) characterizes
the amplitude of the vibration of the suspension point.

When f§ = 0, we have a conservative system with one degree of freedom. An exhaustive analysis of
this system is carried out using the phase plane method. In particular, all periodic motions can be
distinguished using this method.

For small § # 0, we have a system which is close to a conservative system with one degree of freedom.
Moreover, this system if reversible. The invariance of system (9.1) with respect to the replacement of
(1, 0) by (-1, 0) can be verified directly.

If follows from what has been stated that the theory developed in the previous sections can be used
to investigate the periodic motions of a gyroscope with a small amplitude of vibration of the suspension
point. Note that other aspects of this problem have been investigated previously [14]. The case when
la| # |b| is considered here and the case when |a| = |b] is analysed below.

The case when a = b. Equation (9.1) takes the form

., a’180/2)

m+(—a+ﬁcos T)sin0=0 (9.2)

In the case of a fixed suspension point (B = 0), we determine all equilibrium positions from the
equation

dW(®) _ (a* —4acos*(8/2)
0~ 2cos’(8/2)

2
sin8/2)=0, W)= g? §+acose (9.3)

Suppose a® = 4a. In this case, we have a unique, zeroth position of equilibrium 8, = 0 which
corresponds to a classical “sleeping” gyroscope. This gyroscope is stable since the condition a® = dais
identical to the well known Maiyevskii — Chetayev condition C*w? = 4 Amgzg (o is the angular velocity
of the rotation of the gyroscope about the axis of symmetry).

The phase pattern of system (9.2) when B = 0 is shown in Fig. 3 for the case being considered. We
calculate the period of the vibration

8o do

T.=4] ———oe
| Fmwen

, h=W(8g), 0<9y<mn
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and use the notation
126 /2)=k, tg(0/2)=ku
Then
d0 = 2kdu (1 + k*u?)

and the expression for the period takes the form

! du an
T.(k)=8 , T.(0)= ——— 4
!) (1+k2u2)\/(1—-u2)[a2—4a/((l+k2)(l+k2u2)) Va? - 4a ©4)

It is seen from this that T',(k) is a strictly decaying function. This can obviously be directly verified by
analysing the sign of the derivative.

Graphs of T(k) = aT.(k, y) are shown in Fig. 4 for different values of y(y = 4o/a®) with a step size
Ay = 0.5, and in a lower curve y = -1.

The condition dT(k) # 0, together with the property of reversibility of Eq. (9.2), rapidly leads to the
conclusion that “conservation” accompanies the small vibrations of the suspension point of the
2ns-periodic motions of a gyroscope for which

T.(k*)=2ns/n, neN 9.5)

Among these motions are both 2n-periodic motions (s = 1) and motions with a period which is a multiple
of 2m. It can be seen from Fig. 4 that, when a = 1, 2n-periodic motions occur with an “amplitude”
0° = 110°-130° (1.5 < k < 2.0) regardless of the value of the parameter y. The “amplitude” decreases
as the parameter a (the angular velocity of the gyroscope) increases.

Local periodic motions, which are close to the rotation of the gyroscope about the vertical, are not
observed; only the rotation about the vertical exists.

Suppose a* < 4o.. In this case, we have three equilibrium positions, a zeroth position corresponding
to an unstable “sleeping” gyroscope and two symmetrical position of equilibrium with respect to the
zero of equilibrium +8.: 4ocos*(8./2) = a® (Fig. 5).

The period of the vibrations containing all three equilibrium positions is calculated as usual using
formula (9.4). This means that all of the 2ns-periodic motions of a gyroscope which satisfy condition
(9.5) are “conserved” in the case of small vibrations of the suspension point O.

For the two equilibria +6., we calculate

d*w| _ a®+16asin®(8, /2)cos?(8, /2) - 4ocos* (8, /2)

= 4asin?(8, /2
d6? | 4cos?(8, /2) ©.72)

*

Hence, taking account of the relation defining 6., we find the frequency

o, =[4a(do —a?))?

of small vibrations in the neighbourhood of the equilibria 8..

It follows from Theorem 3 that, in the non-resonance case, a unique 2n-periodic motion with an
“amplitude” B exists in the neighbourhood of each of the equilibria +8.. In the resonance case, one
or three 2n-periodic motions exist with an “amplitude” B'4. This follows from Theorem 5 for, writing
down Egs (9.2) in the neighbourhood of the equilibria 6. in the form of system (5.1), we obtain in

X, =0, Y,=—B/w,)sinB,cost

In the classical case, the equilibria +6. of this system with one degree of freedom corresponds to a
regular precession of a Lagrangian gyroscope. Hence, in the case of small vibrations of the suspension
point, the periodic motions established above turn out to be pseudoregular precessions. In the resonance
case, there can be one or three such motions. This fact was established earlier in the case when

la] # |b] [14].
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The case when a = —b. The equation of the reduced system has the form

”_ a® ctg(6/2)

2sin2(6/2) + (-0t +Pcost)sin@=0 (96)

When there are no vibrations of the suspension point, we have a unique stable equilibrium position
6. = m which corresponds to a “sleeping” Lagrangian gyroscope.
Vibrations about the equilibrium position occur with a period

8y Vo
7; =4 I __..._49_._. =4 j av s
x N2AR=W®)] § J2Ar-W(m+V)]

and the frequency of small vibrations is equal to ®. = (o + a®/ 4)'2. If it is taken into account that

h=W(8,)

W(r+v)=(a®/2)1g?(v/2)—acosv

then we obtain that the period is calculated using formula (9.4) with just the replacement of a by —o.

In the function 7.(k, y), negative values of the parameter y correspond to negative . The relations
T(k) = aT.(k, y), when y < 0, are also shown in Fig. 3. It is seen that d7. # 0. This guarantees the
existence of 2n-periodic motions in the case of small vibrations of the suspension point. The “amplitudes”
for these motions satisfy condition (9.5). We draw attention to the interesting fact that 2n-periodic
motions exist in which the angle 8 varies over the range (1 — vg, T + Vvp), vo = 110° — 130°.
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