
~ Pergamon 
www.elsevier.com/locate/jappmathmech 

J. AppL Maths Mechs, Vol. 65, No. 4, pp. 647-664, 2001 
© 2001 Elsevier Science Ltd 

All rights reserved. Printed in Great Britain 
PI I :  S0021-8928(01)00069-7  0021-8928/01/S--see front matter 

PERIODIC MOTIONS OF A SYSTEM CLOSE TO AN 
AUTONOMOUS REVERSIBLE SYSTEMt 

V. N.  T K H A I  

Moscow 

(Received 26 February 2001) 

The problem of the periodic motions of a system containing a small parameter ~t and which, in the case of zero value of this 
parameter,  is identical to an autonomous reversible system, is investigated. The periodic motions of an autonomous reversible 
system form a family. The problem of which of the motions of  this family are generating, that is, belong to the family of ~. periodic 
motions and correspond to the value ~t = 0, is solved. Both "reversible" perturbations, which preserve the property of reversibility 
in a perturbed system, as well as perturbations of general form are considered. Both resonance and non-resonance cases and 
cases where there is an additional "internal" resonance (of the third or fourth order) are studied. The generating solutions, which 
belong to a Lyapunov family of generating reversible systems as well as a system which is close to a conservative system with one 
degree of freedom, are investigated in detail. In each of the problems investigated, constructive conditions are obtained for the 
existence of a periodic motion in the perturbed system. In an application, the dynamics of a Lagrangian gyroscope with a vibrating 
suspension point is studied. Periodic motions are found in the case of small oscillations of the suspension point and, in particular, 
the existence of pseudoregular precessions of a gyroscope is established. The cases investigated were omitted from the treatment 
in earlier papers. © 2001 Elsevier Science Ltd. All rights reserved. 

1. F O R M U L A T I O N  OF T H E  P R O B L E M  

We will consider the problem of periodic motions in the system 

u = U(u, v)+ ~tU~(p., u, v, t) (1.1) 

v=V(u,v)+laV 101, u, v, t); uER t, v~R" (l>~n) 
U(u, - v) = -U(u,  v), V(u, - v) = V(u, v) 

with a small parameter  ~t. When ~t = 0, we have a generating or unperturbed system, which is assumed 
to be reversible and invariant under the replacement of (t, u, v) by (-t, u, -v). For small I 0, we 
obtain a perturbed system which is close to an autonomous reversible system. The perturbations 
/.tU~, ~tV~ are assumed to be 27~-periodic with respect to the time t. 

Periodic motions of an autonomous reversible system always belong to the family in [1]. The question 
arises as to which of the motions of this family are generating, that is, belong to the family of ~t periodic 
motions and correspond to the value ~t = 0. The answer to this question obviously depends on the form 
of the perturbations which are acting and also on whether there is a resonance or a non-resonance 
situation. Here,  it is natural to assume that the perturbations belong to the class of reversible 
perturbations which preserve the invariance of the perturbed system under the replacement of (t, u, v) 
by (-t, u, -v), or to consider perturbations of a more general form when system (1.1) ceases to be 
reversible when ~t ~ 0. 

This formulation of the problem is natural and arises in numerous applications, in particular, in 
mechanics. When the reversible system is a conservative system with one degree of freedom, fairly 
complete results were obtained in [2, 3]. 

A problem for a system which is close to a Lyapunov system was previously solved in a similar 
formulation [4]. The results described below in this paper are close in the scheme of ideas to the results 
obtained in this problem. Furthermore, an autonomous reversible system, like a Lyapunov system, admits 
of [5-7] a Lyapunov family of periodic motions. Below, this family is subjected to a careful analysis with 
the aim of picking out the generating periodic motions. 

The applicability of the results obtained below is obviously not restricted by the analysis of a Lyapunov 
family of reversible systems or conservative systems with one degree of freedom. The basic models which 
are used in classical and celestial mechanics (the Hill problem, various modifications of the three-body 
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problem, the N-body problem, a heavy rigid body with a fixed point, a heavy rigid body on an absolutely 
rough plane, the equations of motion of a mechanical system under the action of positional forces, the 
equations of motion in quasicoordinates, etc.) are reversible [8, 91 and are described by autonomous 
equations. Examples, which became canonical examples, are also known of non-local families of periodic 
motion in these problems, such as elliptic orbits in the two-body problem, a family which contains Grioli 
precessions, in the problem of the motion of  a heavy dynamically asymmetric rigid body around a fixed 
point and so on. 

Finally, we mention that results in the theory of the oscillations of reversible mechanical systems which 
have been previously obtained [3, 7, 10, 11] are used and developed in this paper. A solution of an 
alternate problem is given within the framework of  the development of a complete theory. 

2. A N A L Y S I S  OF A G E N E R A T I N G  S Y S T E M  

We will assume that, when g = 0, system (1.1) allows of T = 2n-periodic motion. The initial value 
u ° = u" and the period T = 27z then satisfy the system of  n functional equations 

v,(u °, 0, T/2) = 0, s = 1 . . . . .  n (2.1) 

(u(u °, v °, t), v(u °, v °, t) is the solution of the generating system with the initial point (u °, v °) when 
t = 0). This system contains l + 1 unknowns u], . . . ,  u], T. Hence, the system of equations (2.1) together 
with the solution u ° = u*, T = 2r~ has a k-family of solutions (k/> l - n) which leads to the existence, 
together with the 21z-periodic motion, of a k-family of T-periodic motions containing this motion 

u=q~(h , t ) ,  v = O ( h , t ) ;  q~(h , - t )=q~(h , t ) ,  ~ ( h , - t ) = - O ( h , t )  

(hi . . . .  , hk are the parameters of the family, that is, the components of the vector h). This family consists 
of motions which are symmetrical with respect to the fixed set M = {u, v : v = 0} of the generating 
system. In the general situation, the period T ( h l  . . . . .  hk)  also depends on the parameters of the family 
and T(h  ] . . . .  , h'k) = 2ft. 

The variational equations have k + 1 solutions of the form 

0q~ (h I . . . . .  h k , t) 0O(h I . . . . .  h k , t) (2.2) 
0t ' 0t 

bq~ (h I . . . . .  h k , t) ~ (h 1 . . . . .  h k , t) = 
Oh i ahj j !,.. k (2.3) 

and, when hy = h~, j = 1, . . . ,  k, solution (2.2) is 2rt-periodic. 
The functions 

q~(h i . . . . .  h k, Tl (2r~) t ) ,  O(h j  . . . . .  hk, T l ( 2 n ) t )  

have a period equal to 2n which is independent of hi, . . . ,  hk. Their  derivatives with respect to hj will 
therefore also be 2~-periodic functions. We calculate these derivatives, marking the substitution of the 
values of the parameters hj = h~. ( j  = 1 . . . .  , k )  with a subscript asterisk. 

p j ( t )=  ~--~f, -~--~t.--~jj, t---~-),, q j ( , )=  -ff~-j , 

j = l  . . . . .  k 

From this, we find the quantities 

(a o/ahj)., (a,/%)., j = l  ..... k (2.4) 

which will be odd and even functions of t respectively. 
The functions (2.4) are the solutions of the system of variational equations. Subject to the condition 

that d T ( h ]  . . . .  , h'k) ~ O, we set up from these functions a system of solutions 
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( ~ T ]  _p,(t)(~.~__T), q j ( t ) (OT)_q , ( t ) (~_~ ._T] ,  j = 2  . . . . .  k (2.5) 

which are 2r~-periodic with respect to t. 
The solutions (2.5) are symmetrical with respect to the fixed set M1 = {Su, 8v : 8v = 0} of the system 

of variational equations. Together with solution (2.2), which is symmetrical with respect to the set 
M2 = {Su, 8v : 8u = 0}, the functions (2.5) form a system of k 2r~-periodic solutions. Furthermore,  the 
variational equations have a single increasing solution of the form (2.4) which is symmetrical with respect 
to the set M 1. All this means that the variational system has k + 1 zero characteristic exponents with 
k groups of solutions such that, after this system has been reduced to a system with constant coefficients, 
the equations corresponding to the zero exponents take the form 

~ j = 0  ( j = l  . . . . .  k - l ) ,  rli =0 ,  ~i =rl l  (2.6) 

In this case, we have 41 = 0 in the set M1. Furthermore,  k /> l - n  + 1 or the variational equations have 
at least l - n simple zero characteristic exponents [12]. 

It follows from the form of the Eqs (2.6) that, according to the zero characteristic exponents, we have 
a crude case [3, 10, 11] in a problem concerning the continuation of symmetrical periodic motion with 
respect to a parameter  in a class of "reversible" perturbations. 

The following theorem therefore holds. 

Theorem 1. Suppose a generating, autonomous, reversible system obtained from (1.1), when g = 0 
allows of a 2rt-periodic motion. This motion then belongs to the k-family of  the parameters  h 1 . . . . .  hk 
of the T-periodic motions. I f  the period T(hl, . . . ,  hk) depends on ha, . . . ,  hk, T(h*l . . . . .  h'k) = 2rt, 
dT(h] . . . . .  hl) ~ O, then the variational equations have at least k + 1 zero characteristic exponents with 
k groups of solutions (k i> l - n + 1) and these exponents do not prevent the extension of the 
27t-periodic motion with respect to the parameter  g, if the perturbations belong to the class of"reversible" 
perturbations. 

Corollary 1. If  the variational equations have k 2rt-periodic solutions, then, for sufficiently small 
I g[ ~ 0, the reversible system (1.1) has a 27t-periodic motion which changes into the 2rt-periodic motion 
of the generating system when rt = 0. 

Proof. When the above-mentioned conditions are satisfied, we necessarily arrive at a subsystem of the form of 
(2.6). The remaining equations do not contain zero characteristic exponents. 

We have the crude case [3, 10, 11] in the sense of the continuation of the periodic motion with respect to a 
parameter in the class of "reversible" perturbations. 

2. If  n = 1 in system (1.1), the condition dT(h*) ¢ 0 guarantees the continuation of the 2re-periodic 
motion of the generating system with respect to the parameter  g in the class of "reversible" perturbations. 

Proof. In this case, the variational equations only have zero characteristic exponents. They reduce to the form 
(2.6) and guarantee the continuation of the symmetric periodic motion with respect to the parameter. 

Remark 1. The conditien dT ~ 0 is a natural condition in the case of non-linear vibrations. The vibrations of a 
linear system do not possess this property. 

2. Note that the system of variational equations can also have other zero characteristic exponents in addition 
to those shown in Theorem 2. 

Example 1. All the motions in a two-body problem are plane. The motion in a plane is described by a fourth- 
order reversible, autonomous system (1 = n = 2). This system admits of a two-parameter family of symmetric, 
periodic (elliptic) orbits and dT ~ O. Consequently, k = 2, the variational equations are reversible and there are 
no less than k + 1 = 3 zero characteristic exponents, the total number of these exponents being 4. 

3. In Example 1, we find one of the interesting problems in which there is a non-local family of periodic 
motions of a reversible system. 
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3. A SYSTEM,  C L O S E  TO A C O N S E R V A T I V E  SYSTEM WITH 
ONE D E G R E E  OF F R E E D O M  

Consider the equation 

z + f ( z )  = ~F(B, z, z,  t) (3.1) 

where the function F(~t, z, z ,  t) is 2n-periodic in t. The problem of the existence in (3.1) of a vibrational 
motion which, when g = 0, converts into one of the vibrations of the generating system has been 
investigated in [2, 3] as well as the analogous problem for the case of rotational motions [3]. The case 
of reversible equation (3.1) which satisfies the conditions f(-z) = - f (z ) ,  F(B, - z ,  z',  -t)  = -F(~t, z, z', t) 
was investigated separately in [3]. 

Below, we consider reversible equation (3.1) in which 

F(g, z, - z,  - t) = F(~I, z, z,  t) (3.2) 

When B = 0, we have a conservative system with one degree of freedom, an exhaustive analysis of 
which is carried out using the phase plane method. We assume that this system admits of a family of 
vibrational motions (Fig. 1), which obviously can be parametrized by the constant x of the energy integral 

? 
z -  + V(z) = x(const), V(z) = 2f f ( z ) d z  

The period of the vibrations is calculated using the formula 

Zmax ( X ) dz 
T(x)= 2 I f f x -  V(z) 

Zmi n (X) 

where Zmin(X), Zmax(X ) are the smaller and the larger root of the equation V(z) = x, respectively. 
The vibrations of the generating equation being considered are symmetrical with respect to the abscissa 

and system (3.1), (3.2) is reversible with a fixed set {z, z': z" = 0}. We therefore derive the following 
theorem from Corollary 2 of Theorem 1. 

Theorem 2. The symmetrical 2r&-periodic (k ~ N) vibrational motion of a conservative system with 
one degree of freedom, for which 

T(x*) = 2rtk / m, rn ~ N, dT(x*)  ~ O 

is continued with respect to the parameter bt in system (3.1), (3.2). 

Example  2. The plane vibrations and rotations of a dynamic, symmetrical satellite in an elliptic orbit 
under the action of gravitational forces and light pressure are described by the reversible equation [13] 

2esin v c(1 + e) 2 
" -  z' = sin z I sin z [ 

z I+ecosv  (1 +ecosv)  4 

(z is the angle between the axis of dynamic symmetry and a fixed straight line in the orbital plane, e is 

(a) Z'[ (b) Z" 

Fig. 1 

~ Z  
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the eccentricity of the orbit, v is the true anomaly and c is a parameter  which characterizes the light 
pressure). When e --- 0 (a circular orbit), we have a smooth conservative system with one degree of 
f reedom 

z"  = c sin z l sin z l 

When c > 0, the equilibrium positions _+ ~ are stable and are surrounded by periodic motions, and, 
when c < 0, the origin of the coordinates is such an equilibrium. The period of the above-mentioned 
vibrations depends on the constant x of the energy integral and, for an equilibrium at - ~, we have 
d T  ~ 0 [13]. Consequently, (Theorem 2), all the 2rok-periodic vibrations of a satellite are "preserved" 
in a weakly elliptic (e ~ 0) orbit. 

Note that this result was formulated earlier in [13]. However, here, a theorem [3] has been used which 
yields the conditions for the existence of periodic motions which are symmetrical about the z'-axis. The 
motions about a zero equilibrium position (c < 0) are of this type. Periodic motions about the equilibria 
+ ~ are symmetrical about the z axis and it is necessary to apply Theorem 2 to them. 

4. A L Y A P U N O V  FAMILY OF P E R I O D I C  M O T I O N S  

As previously, we consider reversible system (1.1) which is now conveniently written in the form 

u = Av + Uo(U, v) + gUl(g, u, v, t) 

v = Bu + Vo(U, v) + p.Vl (g, u, v, t), u e R  t, v e N "  ( l>~n)  
(4.1) 

(A and B are constant matrices and U0, V0 are non-linear terms). 
Suppose (a) the characteristic equation of the linear part of system (4.1), when g = 0, has a pair __.it0 

of pure imaginary roots, (b) among the other roots of this equation, there are no roots which are equal 
to +_iko~(k ~ N) and (c) r ankB = n. Then [7], system (4.1), when g = 0, has an ( l -  n)-parameter set 
of equilibrium positions which belongs to the fixed set M = {u, v : v = 0 and contains the zero 
equilibrium, and a one-parameter  family of Lyapunov periodic motions adjoins each point of this set. 

We will now investigate the question of the existence, in system (4.1), of a 2re-periodic motion when 
e 0. For this purpose, we shall utilize the possibility of reducing system (4.1), when condition c is 

satisfied, to the form [7] 

g = Py + No(~, x, y )+  gNl(g,  ~, x, y, t) (4.2) 

x ~ Jy + Xo( ~, x, y) + gX] (It, ~, x, y, t) 

y = x + Y o ( ~ , x , y ) + g Y l ( ~ , ~ , x , y , t ) ,  ~ e R  I-", x e R " ,  y e R "  

(P is a constant matrix and J is a constant Jordan matrix). 
The non-resonance  case. We will assume that the Jordan matrix J does not contain eigenvalues which 

are close to the number _p2, p E N. In this case, we make the substitution: ({, x, y) ~ (e~{, ex, ey), 
0 < ~ < 1. As a result, we obtain the following system. 

~' = Cl-aPy + E-I-~O(Ea~, EX, Ey)+ E-Ig'--l(g, ea~, ex, ay, t) 

x = Jy + ~-IX0(~a ~, 8x, Ey) + E-lgXl(g, ea~, Ex, (~y, t) (4.3) 

y = x + E-IYo(E~/~, ~x, ~y)+  c-ll.tYj (g, ea~, cx, ey, t) 

We put ~ = I.d/3. Then, when g = 0, we have a linear generating system which does not have roots of 
the characteristic equation equal to +-ip. Consequently [10, 11], this case is not critical, and, for sufficiently 
small [~t ] ~ 0, system (4.2) has a unique 2re-periodic motion. In system (4.3), the "amplitude" of these 
motions is of the order of Ulg. Hence, in system (4.2), the periodic motion has an "amplitude" of the 
order of g. 

Theorem 3. In the non-resonance case, system (4.1), in the case of a sufficiently small [~tl ¢ O, admits 
of a unique 2n-periodic motion and it has an "amplitude" of the order of g. 
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The  resonance  case. We assume that 

t O = p + a l t  ° , c I > ~  (a=const)  (4.4) 

In this case, we separate the variables x], Yl in system (4.2) which correspond to the pure imaginary 
roots. Then, all the variables in the Lyapunov family, apart from ~, xl, y], can be assumed to be equal 
to zero with an accuracy which is considered below. Next, we change from the variables xl, Yl to the 
complex conjugate variables 

z = x ,  + i y] ,  ~ = x l  - iy ,  

and we reduce the system in the variables {, z, ~" to normal form up to terms of the third order inclusive. 
Then 

z = izIto + toz ( 6 )  + A z ~ ]  + . . .  

(A is a real constant) and the frequency f2 of the periodic motion is calculated using the formula 

= tO + col ( 6 )  + A z ° z °  + . . . .  
I - n  I - n  

j=l j,k=l 

(Cj, C p  are real constants, and z ° and ~,° are the initial values of z and 2 respectively). The Lyapunov 
family adjoins the equilibrium ~ = ~*, z = z, = 0. We assume that ~2(~*, Iz°l ) = p ~ ~. Then, in the 
case of fixed ~*, we have df2(~*, ]z °1) ¢ 0 only ifA ~ 0. The following theorem therefore  follows from 
Theorem 1. 

Theorem 4. If, when Ix = 0, system (4.1) satisfies requirements a, b and c above and, moreover, the 
resonance condition (4.4) is satisfied, then a 2rt-periodic motion exists in system (4.1) in the case of 
sufficiently small [ ltl ¢ 0 and almost always (A ¢ 0). 

5. A S E C O N D - O R D E R  S Y S T E M .  T H E  R E S O N A N C E  CASE 

It follows from Theorem 3 that, in the non-resonance case, the "amplitude" of the periodic motion is 
of the order of the small parameter it. We will now investigate what is the "amplitude" in the resonance 
case. For this purpose, without any loss of generality, we consider the second-order system 

x = -tOy + X(x ,  y)  + l tX I (/1, x, y, t) 

y = cox + Y(x ,  y )  + ltYl (it, x,  y, t) 
(5.1) 

In this case, the zero equilibrium of the generating system will be the centre. 
We make the following substitution: (x, y) --* (ex, ey). We then obtain 

X" = --tOy + E-Ix(o:,  Ey)+ ~.l£-lx1 (it, EX, Ey, t) 

y" = Olx + e-I Y(Ex, ey) + ltE-IXl(I.t, ex, Ey, t) 
(5.2) 

and, in the general case, we have 

X(ex, Ey) = E3Xo(E, x, y), Y(ex, Ey) = E3Y0(E, x, y) 

We put e = It 1/3 and write system (5.2) in polar coordinates r, 0 (x = r cos 0, y = r sin 0). We obtain the 
system 

r = e2[(Xo + Xj ) c o s 0  + (Yo + YI )sin 0] 

O = p + l ~ 2 r - l [ - ( X o  + Xl)sin0+(Y 0 + Y~)cos0 + ar~ 3°-2 ] 
(5.3) 

in which, by virtue of the reversibility of the system obtained from (5.1) when It = 0, the conditions 
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X0(0, rcos0,  rsin 0)cos0 + Y0(0, rcos0,  rsin 0)sin 0 - 0 

0(r, 0) --- -X0(0, rcos0, r s in0)s in0+  Y0(0, rcos0, r s in0)cos0  = Ar  3 (A = const) 

are satisfied. 
System (5.3) depends on the parameter  e. When E = 0, (5.3) permits of a symmetrical 2n/p -pe r iod ic  

motion of the form 

r = r *  (const), 0 = 0 , ( t ) ;  O,( t )=O+, ( t )=p t  tloiri O . ( t ) = O ~ ( t ) = p t + r c  

Suppose that 

X. (t) ~ X I (0, 0, 0, t) = a 0 / 2 + a I cos t + b I sin t + a 2 cos 2t + b 2 sin 2t +. . .  

Y.( t ) = - Yl( O, O, O, t ) = a~12 + aj cos t+  bl sm t + a2 cos 2t + b~ sin 2t + . . .  

(5.4) 

We consider two cases. 

1. "Reversible"perturbations. In this case in formula (5.4), the expansion of the function X. ( t )  only 
contains odd harmonics and the expansion of  the function Y,( t )  only contains even harmonics. 

According to the general results obtained earlier in [3], the question of the existence, in reversible 
system (5.3) when e ~ 0, of a 2n-periodic motion is solved by the amplitude equation 

[0(r*, 0 , ( t ) )+  kar* - X , ( t ) s inO, ( t )+  Y,(t)cosO,(t)]dt  = 0 
o 

(k = 1 when t~ = 2,/3 and k = 0 when t~ > 2/3). We write this equation in the explicit form 

f ( r * ) + ( a p - b p ) 1 2  =O, f(r*)--- Ar  *3+kar* (5.5) 

(the sign in front of the bracket corresponds to the sign in the notation for the function 0~(t)). 
It can be seen (Fig. 2) that, in the non-degenerate case whenA(a~ -bp )  ~ O, one of the equations 

(5.5) always has a single simple positive root. The number of such roots for each of the equations is 
equal to one or two and the overall number  of roots is equal to one or three. A 2~-periodic solution 
of system (5.3) with an "amplitude" of the order  of unity corresponds to each root. On taking account 
of  the scaling which is carried out on passing from system (5.2) to (5.3), we conclude that 2n-periodic 
motions exist in (5.1) with an "amplitude" of the order of IX/3. 

Theorem 5. In the resonance case (4.4), the non-degenerate reversible system (5.1), for sufficiently 
small I Ix [ ¢ 0, allows of s symmetrical (s = 1 or s = 3), 2n-periodic motions of the form 

f(r) 

t 
A>0, a < 0  

II i 

I f 

/ / ' " , ~ ' x v ' - " / / v  r 

I I 
I 

Fig. 2 

f(r) 

A>0, a>_0 

/ " /I 

I ! 
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x=p, r*cospt+o6t~), y=~t~r*sinpt+o(I.t ~) 

(s is the n u m b e r  of  s imple  positive roots  r* of  Eqs (5.5)). 

Remark. In the case when A = 0, we choose e = la 1/5 and take account of the fifth-order terms in the functions 
X and Y. As a result, we conclude that 27z-periodic motions exist with an "amplitude" of the order of ~t 1/5 and so 
o n .  

2. Perturbations of general form. In  this case, we have [10] a system of  two ampl i tude  equat ions  

27t 

S[X,  ( t )cosO,( t )  + Y,(t)sin O,(t)]dt = 0 
0 

27t 

[O(r*, 0,( /))  + kar* - X,(t)sin O,(t) + Y,(t)cosO,(t)]dt = 0 
0 

where  

r = r*(const), 0 = O,(t) = pt + 0  ° ( 0  ° = const) (5.6) 

is the 2rt/r-periodic solut ion of  the genera t ing  system obta ined  f rom (5.3) when  e = O. 
Substi tut ion of  the explicit expressions for  X, ,  Y,, 0 leads to the system 

* o * (ap + b p ) c o s O  +(ap - b p ) s i n O  ° = 0  

(5.7) 
, o + b~,)sin 0 o Ar *3 + kar* + (ap -bp)cOsO -(ap =0 

It  can be seen that,  in the non-degene ra t e  case, 

A[(ap + bp )2 + (ap - bp )2 ] :¢ 0 (5.8) 

system (5.7) always has at least one simple solution and the 2rt-periodic mo t ion  of  system (5.1) 
cor responds  to this solut ion [10]. In part icular ,  when  ap + bp = O, we have 0 ° = 0 or  0 ° = ~z, and this 
solution will be close to a symmetr ica l  solution. 

Theorem 6. For  a sufficiently small I~1 ¢ 0, the non-degene ra t e  resonance  system (4.4), (5.1), (5.8) 
admits  of  s 2rt-periodic solutions of  the fo rm 

I , 
x=la~r cos(pt+O°)+o(I.t)'J), y=la~r*sin(pt+O°)+o(la ~) 

(s is the n u m b e r  of  s imple roots (r*, 0 °) of  system (5.7) for  which r* > 0). 

Remark 1. In the analytic case, the generating system in (5.1) is identical to a Lyapunov system and the result 
of Theorem 6 is known [2]. 

2. Example 2 is an interesting continuous problem; the theory for a Lyapunov system is inapplicable here. 

6. A S Y S T E M  O F  A R B I T R A R Y  O R D E R .  
P E R T U R B A T I O N S  O F  G E N E R A L  F O R M  

For simplicity, we will assume that  the condit ion de t J  ¢ 0 is satisfied in system (4.2). Then,  (4.2) reduces 
to a form in which P -- 0. For  this purpose ,  instead of each of the variables ~ ,  it is sufficient to choose 
the required  l inear combina t ion  of  the variables ¢1 . . . .  Ct-n, xl, . . . ,  Xn. 

When  ~ = 0 in (4.2), we have a reversible genera t ing  system which allows of  a unique family of  
equi l ibr ium posit ions 

/~ = ~j* ( c o n s t ) ,  x = y = 0 

We replace ~ by ~* + ~ in system (4.2) and, in the result ing system, we change the scale: (~, x, y) 
( ~ ,  ax, ey). We obtain  
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~ .=e - l~ , ( e~ ,  ex, Ey)+t~-I~--n(~t, ~*+E~, EX, Ey, t) 

X =[J+A(~*)ly+E-IX*(E~,  Ex, Ey)+la£-tXl(I.t, ~*+E~, Ex, ey, t) (6.1) 

y" =[I+B(I~*)]x+e-IY*(e~,  ex, ey)+l.t~-tY~(p., [ j*+~ ,  ~x, ey, t) 

(~*,  X*, Y" are non- l inear  functions,  _ (~, 0, 0) = 0 and I is the identi ty matrix).  
We will first consider  the non- re sonance  case when  the matr ix  C(~*) = [J + At~*)][I + n(~*)] does  

not  have eigenvalues  close to the n u m b e r  - p Z ( p  ~ ~) .  Then,  on put t ing  ~ = [ ~t[ /2, we deduce  that  in 
(6.1) a 2~-per iodic  mo t ion  ~ = const ,  x = y = 0 exists when  ~ ¢ 0. The re fo re ,  when  I~tl ~ 0, system 
(6.1) also has a 2n-per iodic  mo t ion  if the ampl i tude  equa t ion  

2n 

,~1(0, ~*, O, O, t)dt = 0 (6.2) 
o 

has a s imple roo t  ~*. 

Theorem 7. Suppose  ~* is such a s imple root  of  the ampl i tude  equa t ion  (6.2) and the matr ix  
C(~*) dose  not  have eigenvalues which are close to the n u m b e r  - p Z ( p  E [~). Then ,  a unique 27z-periodic 
mo t ion  exists in the ne ighbourhood  of  the equi l ibr ium posi t ion ~ = ~*, x = y = 0 of  system (4.2) and 
it has an " amp l i t ude"  of  the o rder  of  p.. 

We will now investigate the resonance  case (4.4). For  this, assuming as before  that  det  J : 0, we put  
~t = 0 in system (4.2). In  the result ing system, we next separa te  the pair  of  var iables  which cor responds  
to the resonance  f requency and write out  the quadra t ic  t e rms  of  interest  in explicit form. As a result, 
taking into account  the p rope r ty  of  reversibili ty of  the genera t ing  system, we have 

n-1 n- I  

x - - - - ( o y +  x ~  as~s + y Y .  bsrls +. . .  
s=l s = l  

n - I  n - I  

• * * ~  dt * * *  y = m x + x Y .  a s ~s YY~ bs ~s +. . .  
s = l  S=I 

~ = a x y +  .... r l  = Jn_ l~+ bx-y + .... ~ = I n _ l ' q +  .... vI~R "-I, g e R  "-I 

(6.3) 

* * * *  , , ,  

Here ,  as, bs, a~,  b s are real constants ,  a and b are real (l - n)-  and (n - 1)-dimensional  
vectors  respectively, Jn-1 is an (n - 1) × (n - 1) Jo rdan  matr ix  and In-1 is the (n - 1) × (n - 1) identity 
matrix. 

L e m m a .  I f  the n u m b e r  - 40) 2 is not  an e igenvalue of  the matr ix  Jn-a, system (6.3) reduces  to a fo rm 
, * * *  * *  

in which all of  the coefficients a s, bs, a s ,  bs are equal  to zero.  

The proof is carried out by the direct construction of a polynomial transformation with indefinite constant 
coefficients. The condition that the coefficients mentioned in the lemma are equal to zero leads to a system of 
linear equations for determining the coefficients of the transformation. The system is compatible if its determinant 
det(J,_l + 4c02I,_a) ~ 0. 

We will now consider  the resonance  case (4.4) and write system (4.2) in the fo rm 

x =-coy+Xo(X, y, g n, g)+laxl(u, x, y, g n, ~, t) 

y =coy+Y0(x, y, g ",1, g)+l~r~(p., x, y, ~, n, g, t) 

~ =--.0(x, y, g n, ~)+la-~l(p, x, y, ~, -q, ~, t) 

~q = J , - t g + H 0 ( x ,  Y, g9 ~q, ~)+t.tHt(I-t, x, y, 1~, ~q, ~, t) 

~ =In_111+Zo(x,  y, ~, "q, ~)+laZl([t ,  x, y, ~, lq, ~, t) 

(6.4) 

We shall assume that  the t r ans fo rmat ion  which guaran tees  the l e m m a  has already been  carr ied out in 
this system. Fur the rmore ,  we shall assume that,  in system (6.4), the var iables  x and y are t r ans fo rmed  
using fo rmulae  which ensure  normal iza t ion  of  the following second-order  system 
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x =-03y+ Xo(x, y, O, O, O) 

y =oax + Yo(x, y, O, O, O) 

up to cubic terms inclusive. We now pass into the neighbourhood of the equilibrium 

x = y = O ,  /~=~*, ~1=~=0  

and change the scale by the replacement of (x,y ,  ~, rl, ~) by (~x, ey, ~* + ~2~, ~5/~rl ' ~5/3~), E 3 = Nit. Finally, 
instead o fx  andy,  we use the polar coordinates r and 0. 

As a result of all these transformations, we obtain the following system 

Here, 

r = E:2t(Xo + X~*)cosO + (]I0 + Yl*) sin0] 

0 = p + E2r -1 [-(X 0 + Xl*) sin 0 + (Yo + Yl*)COS0 + art: 3a-2 ] 

~ j = e ~ o + E ~ . l ( e  3, ercosO, ersin0, ~*+e2~ e~'q, e ~ ,  t) 

~q =Jn_lg+eHo+e~H](~:  3, ercosO, ersin0, ~*+e2~ e~q,  ~ ,  t) 

~ = l . _ ] ~ + e Z ;  +e%Zi(e 3, ercosO, ersin0, 6" +e2~ e~'q, e ~ ,  t) 

yo(EX, Ey, ~*+£2~, E~lq, E~)=E:2yo(~, ~*, x, y, ~ ~1, ~) 

Xl* = XI(E 3, Ex, Ey, 6" +E2~, E~lq, E~g, t) 

YI*= Yl(e 3, ~_x, ey, ~*+e2g e~lq, E~g, t) 

(6.5) 

In order to solve the problem of the existence of a 2x-periodic motion when e ~ 0, it is necessary to 
set up a system of amplitude equations [10]. These equations in the variables r and 0 are the same as 
in system (5.7), and for the variable ~ we obtain 

2~ 

f ~l(O, O, O, ~*, O, O, t )d t=O (6.6) 
0 

Theorem 8. For sufficiently small I~t[ 4: 0, the non-degenerate resonance system (4.4), (5.8), (6.4) 
allows of s 2x-periodic motions of the form 

x = l a i r  * cos O, (t)+ o(la ~), y = l a i r  * sin O,(t)+ o(la ~)  

I 

1~ = t~* +ItS "~(~*, t)dt+o(~t), r I = O(p.), ~ = 0 ( ~ )  
0 

(s is the number of simple roots (r*, 0 °, ~*) of system (5.7), (6.6) for which r* > 0). 

The functions E~, H~, Z~) vanish when e = 0 and the expansions of the functions X~I, Y] when e = 0 are 
given by formulae (5.4) with the sole difference that the coefficients of the expansions now depend on 
~*. Moreover, when e = 0, we have 

X o cosO+ Y0* sinO -~0, - X o sinO+ ro cosO = Ar 3 (A = const) 

When E = 0, system (6.5) allows of a 2rt/p-periodic motion 

r = r*(const), 0 = 0.(t) = p t+0° (0  ° = const), 6= const 
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7. " I N T E R N A L "  T H I R D - O R D E R  R E S O N A N C E  

In the study of the periodic motions of system (4.1) described above, cases of the existence of an 
"internal" two-frequency resonance, when the characteristic equation, together with a pair of pure 
imaginary roots _+i03, also has the roots +_ik03(k ~ ~) ,  were excluded from the treatment. We will now 
return to these cases, taking account of the fact that, in the non-resonance case, the problem is solved 
by Theorem 3. Here,  we will confine ourselves solely to the fourth-order system corresponding to the 
above-mentioned pure imaginary roots. 

In the case of a third-order "internal" resonance, the system in the complex conjugate z, 2 acquires 
the form 

z i =i031z]+iBlE2+Zlo(Z, ~)+laZtl(kt, z, ~, t) 

z 2 =-i032z2+iB2~l'Z 2 +Z20(z, z)+kI.Z21(IJ., z, z, t) 
(7.1) 

Here, the generating system has already been reduced to normal form up to the second order inclusive: 
in system (7.1), B1 and B2 are real constant coefficients and the functions Z10, Z20 are of no less than 
the third order with respect to z, z. Moreover, the complex conjugate group of equations is omitted 
and the frequency 031 is identical to 2032, apart from a small parameter. 

We change the scale in system (7.1): (z, 2) --> (~z, e2), E 2 = I~tl and henceforth use the polar coordinates 
r,, 0~: 

z, = ~ e x p ( i 0 , ) ,  ~, = ~ e x p ( - i 0 s ) ,  s = 1, 2 

As a result, we obtain 

ra = 2EBar~r 2 sinO+e~r:(Z~-i% + ~ i %  ) 

^ E * - i o  " Oi =031 + e B I r l - ~ r 2 c ° s u + ~ ( Z I  e i _21*e,el) 
2ir I 

( Z2e-i% _ ~2 e ie2 ) 02 = -032 + eB25½ cos0 + 2ir~ 

Z~ = e.Z~0 + Z~I, Z~0 = E-3Za0(e-v~exp(i0), e ~ r  exp(-i0)) 

Z~l = Zal(~t, ~ r e x p ( i 0 ) ,  E~rexp(- i0) ,  t), o~ = 1, 2; 0 =  01 +20 2 

Furthermore,  if, in system (7.1), we have 

Zsl(0, 0, 0, t)=X~l(t)+iYs~(t ) 

Xsl (t) = aos / 2 + als cos t + bls sin t + a2s cos 2t + b2s sin 2t +...  

Ysl(t) - . . . . .  • aosl2+ajsCOSt+bissint+a2sCOS2t+b2ssin2t+.." 

(7.2) 

(7.3) 

then, in system (7.2), we obtain 

Zs l  (t)e-ies ~**  ios • • +Zsze = 2[Xs~(t)cosO, + Ysj(t)sinO s] 

Z~l* (t)e -ie" - Z ~ * e  ie" = 2 i [ - X s l  (t) sin 0 s + Ysl (t) cos 0 s ], 

Z~(t)=ZsI(O, O, 0, t)=Zsl(O, O, O, t) 

We consider the resonance case when 

s = l ,  2 

o ) l =p+oq l . t  °, 032=P/2+oc21.t °, p~ l~ ,  (z].2=const, 

Here, when ~ = 0, system (7.2) has a 4rt/p-periodic solut ion 

r~ ,= r~ ,  ~ = 1 , 2 ;  0 1 = p t + 0 [ ,  0 2 = - p t / 2 + 0 " 2  

~ > 1  (7.4) 

(7.5) 
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which depends on four arbitrary constants r~, 0~. Whenp  = 2q, q ~ IN, the solution will be 2~/q-periodic. 
When 0~ = 0 or 0~ = 7~, the above-mentioned solution is symmetrical with respect to the fixed set of 
the reversible generating system. 

According to the previous results [10], simple roots of the system of amplitude equations guarantees 
the existence of a periodic motion in system (7.1) for sufficiently small I~tl ~ o. We will now set up 
these equations in each of the cases being considered. 

1. "Reversible'perturbations, p = 2q, q ~ IN 

• o ~ r l " =  0 F -= 2B lr~ cos 0 ° + (apl - bpl ) COS 01 + 2ka 1 

2 B 2 ~  cos0 ° +(aq2 + bq/)COS0~ + 2ka2ff-~- = 0 (7.6) 

2. "Reversible" perturbations, p = 2q - 1, q ~ IN 

F=O,  B 2 ~ c o s O *  +ka2 =O 

3. Perturbations o f  general f o r m , p  = 2q, q ~ IN 

* • o 

F 1 -- 2Blr ~ sin 0 ° + (apl + b*pl )cos O~ + (apl - bpl )sin 01 = 0 

* o * • o ~ l o  F 2 --- 2/~r~ cos0* +(apl -bpl)COS01 - ( a p l  +bpl)Sln01 +2ka I =0 

2 B 2 ~  sin0" +(aq2 - bq2)COS0 ~ +(a;2 + bq2)sin 0 ~ =0 

282  cos0 ° + b. )cos0 -(aq - b; )s n + 2k. 4 - = 0 

4. Perturbations o f  general forrn, p = 2q - 1, q ~ IN 

FI=0,  F2=0, B2 r l ~ s i n 0 ° = 0 ,  B 2 ~ c o s O ' + k a 2 = O  

(7.7) 

(7.8) 

(7.9) 

In formulae (7.6)-(7.9) above, it is necessary to put k = 1 when ~ = 1/2 and k = 0 when c~ > 1/2. 
Moreover, 0 ° = 0] + 20~, and, in systems (7.6) and (7.7), we have 0~ = 0 or 0~ = n. 

The following theorem holds. 

Theorem 9. A periodic solution 

zj = ~t ½ ~r~ exp{i(pt  + O~ ) } + o(~t ~) ,  z2 = ~t ½ ~r~ exp{ i ( -p t  / 2 +0~)} +o(~t ~ )  (7.10) 

of system (7.1) corresponds to each simple root of any of the systems of amplitude equations 
(7.6)-(7.9). Here,  in the cases of (7.6) and (7.7), we have symmetrical periodic motion of the reversible 
system, in cases (7.6) and (7.8), the solution has a period equal to 2n and, in cases (7.7) and (7.9), the 
period is equal to 4n. 

This assertion follows from the more general results in [10] applied to system (7.1). 

Remark. It follows from Theorem 9 that, when p = 2q - 1, q E N the effect of a doubling of the period in the 
problem is observed. 

We will now analyse systems (7.6)-(7.9) in the case when k = 0. 
Suppose the notation 

A I = Bl(apl - bpl), A2 = B2(aq2 + bq2) 

is introduced in system (7.6). In the case when A1 > 0, A2 < 0, we choose 0] = 7z, 0~ = 0 and in the 
o o o o 

case whenA 1 < 0,A 2 < 0, we take 01 = 0, 0 2  = ~. Finally, whenA1 < 0, A 2 < 0, we put 01 = 0 2  = 0. 
It is obvious that such a choice of initial angles guarantees the compatibility of system (7.6). It is only 
in the case whenA1 > 0,A2 < 0 that system (7.6) does not have roots when k = 0. 

When k = 0, system (7.7) always has a simple root (r~, r~) with r~ = 0, and r~ are determined 
from the first equation in (7.7). In this case, the angles 0] and 0~ are chosen such that the quantity 
cos 0 ° cos 0] has a sign which is opposite to that of the number A1. 
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We now turn to system (7.8). We multiply the first equation by sin 0 ° and add it to the second equation, 
which has been multiplied by cos 0 °. We obtain the next equation by subtracting the third equation after 
if has been multiplied by sin 0 ° from the first equation multiplied by cos 0 °. Similar operations are carried 
out with the second and fourth equations. As result, we obtain the system 

2Blr ~ + (apl + bern )sin 20~ + (ap~ - bez )cos20~ = 0 

* • o (apl + b*pl )cos20~ - (ap~ - bpl )sm20 2 = 0 (7.11) 

2 B a r  ~ +(aq2-bq2)Sin(O [ + 0~)+ (aq2 + bq2)cos(0 [ +0~) = 0 

(%2 - b;2)cos(0; + 0 ~ ) -  (";2 + b.2)si . (0~ + 0~) = 0 

It can be seen that, in the non-degenerate case 

BL2 #O(ap, +b*p,)(a*p, -bp,)#O, (aq2-b;2)(aq2 +bq2)~O 

system (7.11) always has a simple root (r], r°2, 0], 0]). 
When k = 0, we replace the first and third equations in (7.9) by the first two equations of system 

(7.11). The existence, when k = 0, of a family of 0] solutions in system (7.9) then becomes 
understandable. In this solution r] = 0. 

Note that, when k ~ 0, system (7.9) has a simple solution in which r] ~ 0, sin 0 ° = 0. 

8. " I N T E R N A L "  F O U R T H - O R D E R  R E S O N A N C E  

We will assume that the generating system has been reduced to the normal form up to the third order 
inclusive. Then, in the complex conjugate variables z, 2, we have the system 

Zi =i011Zl +izl(AtL IZl 12 +al2 IZ2 la)+ i/~z23 + Z~o(Z, z)+lXZit(la, z, ~, t) 
(8.1) 

z2 =_i012z2 +iz2(A21 iz I [2 +A22 iz 2 12)+iB2~1~2 +Z20(z ' ~)+l/Z21(l.t ' z, z, t) 

(Asj, Bs are real constants and the functions Zso are of an order which is no less than the third order in 
z, 2,). As in the treatment of third-order resonance, we change the scale in system (8.1) and now choose 
E = ~t 1/3. We next write the system in polar coordinates 

ra =2~.2Barl~r~sinO+e2r~(Z~e -iOa + Z~e lea), (x= 1,2 

0 i = 01, + eZ(A,,li + Azzr2 + Blrl-~r~ cos0)+ ~;~2(Z;e -`°' - ~ 'e  i°' ) (8.2) 
2ir 1 

02 = -012 + ~2 (A2lrl + A22r2 + B2rl~r2 )~2 cosO)+ --~--ff-(Zl'e -i02 - Z;e iOz ) 
2ir~2 

0 = 0t + 302 

(the functions Z~ have the same meaning as in system (7.2)). 
We now consider the resonance case when 

011 = P + all -t°, °12 = P /3  + a2~t a, p E • (al.2 = const, a I> 2 /3)  

Here,  when e = 0, system (&2) has a 6n/p-periodic solution 

r a = r ~ ,  o~=1,2; 0~=pt+0~ ,  02=-pt13+O" 2 

(r~, 0~ are constants) and, when p = 3q, q ~ ~, the solution will be 2n/q-periodic. Moreover, in the 
symmetric solution, we have 0~ = 0 or 0~ = re. 

We now set up the systems of amplitude equations in each of the possible cases 
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1. "Reversible"perturbations, p = 3q, q E N 

F -= 2(Allti ° + Al2r~)ri °½ +2Bir~ ~ cos0 ° + (apl - bpl )cos0~ + 2ka]rl °Y2 (8.3) 

2 ( A 2 1 t i  ° + A22r~)r~ 72 rl °~ o • o +2B 2 r 2 cos0 °+(aq2 +bq2)COS02 +2ka2r ~ =0 

2. "Reversible"perturbations, p ~ 3q, q e 

F = 0 ,  A21rl*+A22r2+B2r~r~cosO*+ka2 =0 (8.4) 

3. Perturbations o f  general form, p = 3q, q ~ N 

_ 21~ r; ~2 * E l sin 0 ° + (apl + b;l )cos  01 + (apl - bpl )sin 01 = 0 

cos0 . . . .  2kalrl.~ F 2 -- 2(Allli ° + Al2r ~)rt ° + 2B I r~ + (apl - bpl ) cos 01 - (apl + bpl ) sin 0~ + = 0 

2B2rlO~4sinO ° +(aq2 - b ; 2 ) c o s 0 ;  +(aq2 + bq2)sin0; =0  (8.5) 

Y 2B2r]O~ r2 o 2(A21ti° + A22d)r  ~ 2 + cosO° + (a;2 + bq2)COS O[ - (aq2 - b* 2q )sin 0~ + 2 k a 2 r ~  = 0 

4. Perturbations o f  general form, p ~ 3q, q ~ N 

El=0,  B2r~°~r~ sin 0° = 0 (8.6) 

F2=0, A21rlO+ A22r~ + Bz r~r~ cosO°+ka2=O 

Theorem 10. A periodic solution 

z,=ta~]-~exp{i(pt+O~)}+o(~tU3),  z=g~aJ~2 exp{ i ( -p t /3+O"2)}+o(g  ~ )  

of system (8.1) corresponds to each simple root of any of the systems of amplitude equations 
(8.3)-(8.6). Here,  in the cases of (8.3) and (8.4), we have a symmetric solution of a reversible system. 
In cases (8.3) and (8.5), the solution has a period equal to 27~ while, in cases (8.4) and (8.6), the period 
is equal to 6m 

9. T H E  D Y N A M I C S  OF A L A G R A N G I A N  G Y R O S C O P E  W I T H  
A V I B R A T I N G  S U S P E N S I O N  P O I N T  

Consider the motion of a Lagrangian gyroscope (of a dynamically symmetrical rigid body with a centre 
of mass on the axis of symmetry) about its suspension point O. It is assumed that the point O executes 
vertical harmonic oscillations ~(t) = a,, cosf2t about a certain fixed point. 

The equations of motion of the problem are known [14, 15]. If the orientation of the connected system 
of coordinates is specified by the Euler angles, the coordinates/g and q0 will be cyclic. We put the constant 
values of the momentsp~ andpe equal toAD_a, AD.b respectively (A is the equatorial moment of inertia, 
and a and b are dimensionless constants). We then obtain [14, 15] the following expressions for the 
angular velocities of the precession and characteristic rotation of the gyroscope. 

~ , = a - b c o s 0  tO' Ab ( a - b c o s 0 ) c o s 0  
sin 20 ' =-C sin 20 

(C is the axial moment of inertia and a prime denotes differentiation with respect to the dimensionless 
variable z = g2t). 

Hence, the investigation of the motion of the gyroscope reduces to an analysis of a system with one 
degree of freedom and a generalized coordinate 0 
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d ( a - b c o s O )  2 
0" -~ ~- (-or + [3 cos x) sin 0 = 0 (9.1) 

dO 2sin 2 0 

The dimensionless parameters a and [3 and defined by the formulae [14, 15] 

m g z G  , a--2-* 13=t0 
(l o = A / ( m z a )  is the reduced length of the body as a physical pendulum, rn is the mass of the gyroscope 
and Za  is the distance from the centre of mass G to the point 0). The parameter cz (a  > 0) characterizes 
the position of the centre of mass on the axis of symmetry and the parameter  13 (13 i> 0) characterizes 
the amplitude of the vibration of the suspension point. 

When 13 = 0, we have a conservative system with one degree of freedom. An exhaustive analysis of 
this system is carried out using the phase plane method. In particular, all periodic motions can be 
distinguished using this method. 

For small 13 ~ 0, we have a system which is close to a conservative system with one degree of freedom. 
Moreover,  this system if reversible. The invariance of system (9.1) with respect to the replacement of 
(z, 0) by (-% 0) can be verified directly. 

If follows from what has been stated that the theory developed in the previous sections can be used 
to investigate the periodic motions of a gyroscope with a small amplitude of vibration of the suspension 
point. Note that other aspects of this problem have been investigated previously [14]. The case when 
l a I ~ I b [ is considered here and the case when ] ct [ = I b I is analysed below. 

The case when  a = b. Equation (9.1) takes the form 

0"+  a2 t g (0 /2 )  ~ - ( - ~ + [ 3 c o s x ) s i n 0  = 0  
2cos2(0/2)  (9.2) 

In the case of a fixed suspension point (13 = 0), we determine all equilibrium positions from the 
equation 

dW(O) = (a 2 - 4ct c o s 4 ( 0 / 2 ) )  s i n ( 0 / 2 )  = 0, 
dO 2 cos 3 (0 / 2) 

a 2 0 
W(0) = -:-- tg 2  +, cose 

2 
(9.3) 

Suppose a 2 /> 4cL In this case, we have a unique, zeroth position of equilibrium 0, = 0 which 
corresponds to a classical "sleeping" gyroscope. This gyroscope is stable since the condition a 2 > /4a  is 

2 2 identical to the well known Maiyevskii - Chetayev condition C o3 >i 4 A m g z a  (o3 is the angular velocity 
of the rotation of the gyroscope about the axis of symmetry). 

The phase pattern of system (9.2) when 13 = 0 is shown in Fig. 3 for the case being considered. We 
calculate the period of the vibration 

Oo dO 
T, =410 x/2[ h - w ( 0 ) ] '  h=W(00),  0 < 0  o< 

rote 

Fig. 3 
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and use the notation 

tg(O 0/2) = k, tg(0/2) = ku 

Then 

dO = 2kdu/(1 + k2u 2) 

and the expression for the period takes the form 

du 4n 
T,(k) = 8 S , T,(0) = (9.4) 

0 (1 + k2u2)4(l -u2) [a  2 -4~ / ( ( I  +k2)(l  +k2u2)) ~-a2 -4o~ 

It is seen from this that T,(k) is a strictly decaying function. This can obviously be directly verified by 
analysing the sign of the derivative. 

Graphs of T(k) = aT,(k, 7) are shown in Fig. 4 for different values ofy(y = 4ct/a 2) with a step size 
Ay = 0.5, and in a lower curve y = -1. 

The condition dT(k) ~ O, together with the property of reversibility of Eq. (9.2), rapidly leads to the 
conclusion that "conservation" accompanies the small vibrations of the suspension point of the 
2us-periodic motions of a gyroscope for which 

T,(k*) = 2ns/n,  n ~ I~ (9.5) 

Among these motions are both 2n-periodic motions (s = 1) and motions with a period which is a multiple 
of 2n. It can be seen from Fig. 4 that, when a = 1, 2n-periodic motions occur with an "amplitude" 
0 ° = 110 ° - 130 ° (1.5 < k < 2.0) regardless of the value of the parameter y. The "amplitude" decreases 
as the parameter a (the angular velocity of the gyroscope) increases. 

Local periodic motions, which are close to the rotation of the gyroscope about the vertical, are not 
observed; only the rotation about the vertical exists. 

Suppose a 2 < 4c~. In this case, we have three equilibrium positions, a zeroth position corresponding 
~Orano~nSqabli~isleep__i0g"4gycOSC(oP~ 2 ;nd  a2t~F~y.~.etrical position of equilibrium with respect to the 

The period of the vibrations containing all three equilibrium positions is calculated as usual using 
formula (9.4). This means that all of the 2rcs-periodic motions of a gyroscope which satisfy condition 
(9.5) are "conserved" in the case of small vibrations of the suspension point O. 

For the two equilibria _.+0,, we calculate 

d2W a2 +16otsirl2(O,/2)cos2(O,/2)-4@cos4(O,/2) = 4~sin2(0, /2)  
d -~ ' ,  = 4 cos2(0,/2) 

Hence, taking account of the relation defining 0,, we find the frequency 

to. = [4~(4a -a2)] ~ 

of small vibrations in the neighbourhood of the equilibria 0,. 
It follows from Theorem 3 that, in the non-resonance case, a unique 2re-periodic motion with an 

"amplitude" 13 exists in the neighbourhood of each of the equilibria +0,. In the resonance case, one 
or three 2r~-periodic motions exist with an "amplitude" 131~. This follows from Theorem 5 for, writing 
down Eqs (9.2) in the neighbourhood of the equilibria _0,  in the form of system (5.1), we obtain in 
(5.4) 

X, - 0 ,  Y, =-(13/to,)sinO, cosx 

In the classical case, the equilibria _+0, of this system with one degree of freedom corresponds to a 
regular precession of a Lagrangian gyroscope. Hence, in the case of small vibrations of the suspension 
point, the periodic motions established above turn out to be pseudoregular precessions. In the resonance 
case, there can be one or three such motions. This fact was established earlier in the case when 
lal * Ibl [14]. 
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The case when  a = -b .  The  equa t ion  o f  the r e d u c e d  system has the fo rm 

0"  a 2 c t g ( 0 / 2 )  
2 s i n 2 ( 0 / 2 )  ~ ( -e t  + l g c o s x ) s i n 0  = 0 (9.6) 

W h e n  the re  a re  no v ibra t ions  of  the suspens ion  point ,  we have a un ique  s table  equ i l ib r ium pos i t ion  
0, = x which co r r e sponds  to a " s l eep ing"  L a g ra ng i a n  gyroscope.  

Vib ra t ions  abou t  the  equ i l ib r ium pos i t ion  occur  with a p e r i o d  

Oo dO Vo dv ! =4! , 
T. = 4 ~]2[h - W(O)] ~]2[h - W(rc + V)] h = W(O o) 

and the  f requency  o f  small  v ibra t ions  is equa l  to  m, = ( a  + a 2 / 4) I/2. I f  it is t aken  into  account  that  

W(/t + v) = (a 2 / 2) tg 2 (v / 2) - o~ cos v 

then  we ob ta in  tha t  the  pe r iod  is ca lcu la ted  using fo rmula  (9.4) with jus t  the r e p l a c e m e n t  of  c~ by - a .  
In  the  funct ion  T, (k ,  y), negat ive  values  o f  the  p a r a m e t e r  7 c o r r e s p o n d  to nega t ive  a .  The  re la t ions  

T ( k )  = a T , ( k ,  y), when ~' < 0, are also shown in Fig. 3. I t  is seen tha t  d T ,  ¢ O. This  gua ran tees  the 
existence of  27t-periodic mot ions  in the case of  small  vibrat ions of the suspension point .  The  "ampl i tudes"  
for  these  mo t ions  satisfy cond i t ion  (9.5). We draw a t t en t ion  to the in te res t ing  fact  that  2x -pe r iod ic  
mo t ions  exist in which the angle 0 var ies  over  the range (n - v0, 7t + v0), v0 = 110 ° - 130 °. 

I wish to thank  V. V. Rumyan t sev  for  his cons tan t  in teres t  in and suppor t  o f  inves t igat ions  into the 
v ibra t ions  o f  revers ib le  mechan ica l  systems. 
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